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Abstract. A class of parallel characteristical algorithms for global optimization of one-dimensional
multiextremal functions is introduced. General convergence and efficiency conditions for the algo-
rithms of the class introduced are established. A generalization for the multidimensional case is
considered. Examples of parallel characteristical algorithms and numerical experiments are present-
ed.

Key words: global optimization, parallel computations, characteristical algorithms.

1. Introduction

In this paper we introduce a class of parallel algorithms to solve the one-dimensional
global optimization global optimization problem over an interval, i.e. to find the
absolute minimum of a real-valued function�(x); x 2 [a; b]. Many known methods
were designed for sequential computers (see, e.g. [2,8, 10–14, 17–19, 21, 26, 30–
31]) and therefore executed trials (evaluations of the objective function) sequential-
ly. Parallel algorithms under consideration perform several trials simultaneously
during each iteration – one trial at each of the processors of the multiprocessor
system the algorithm is implemented on. Such a procedure allows us to accelerate
solving the problems in which the performance of even one trial requires a lot of
time.

Different approaches to designing the parallel computational methods are given
in [3, 4, 6, 7, 16, 20, 27–29]. In particular, parallel computations can be used
to accelerate executing the optimization algorithm decision rules and to decrease
the time of conducting each trial (i.e. computing the function value in one point).
Anyhow, such parallelization is specific for each concrete algorithm and concrete
problem, whereas the subject under consideration in this paper is the construction
of some general principles of parallel choice of trial points for the class of parallel
characteristical algorithms.

The paper is structured as follows. Section two introduces the class of par-
allel characteristical algorithms and gives examples of algorithms belonging to
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this class. Conditions providing various kinds of convergence for parallel char-
acteristical algorithms are established in Section three. Section four is devoted
to a generalization of the multidimensional case. Efficiency of parallelization is
theoretically estimated in Section 5, while results of numerical experiments are
described in Section 6. Section 7 concludes the paper.

2. Parallel Characteristical Algorithms

A global optimization algorithm minimizing a function �(x); x 2 [a; b] is called a
parallel characteristical algorithm if trial points are chosen according to the rules
found below.

Trials of the first n � 1 iterations are performed in arbitrary K = k(n) =
p(1)+ p(2)+ � � �+ p(n) points of the interval [a; b], where p(i); i � 1, denotes the
number of trials of the i-th iteration. Trial points corresponding to any subsequent
Q-th iteration, Q > n, are chosen according to the rule:

(1) points of the set

Xk = fx1; . . . ; xkg [ fag [ fbg; (2.1)

including the boundaries of the interval [a; b] and the coordinates xj; 1 � j � k,
of preceding trials, where

k = k(Q� 1) = p(1) + � � � + p(Q� 1) (2.2)

are renumbered (by subscripts) in the order of increasing the coordinates, namely

a = x0 < x1 < � � � < x� = b (2.3)

where � + 1 = �(Q) + 1 is the quantity of (different) elements of the set Xk from
(2.1);

(2) a real number R(i) is assigned to each subinterval (xi�1; xi); 1 � i � � ,
where R(i) is called the characteristic of this subinterval;

(3) characteristics R(i) of the subintervals (xi�1; xi); 1 � i � � , are ordered
by decreasing

R(i1) � R(i2) � � � � � R(i� ); (2.4)

(4) the next p trials of the Q-th iteration are performed in the points of the set

T (Q) = fxk+1; . . . ; xk+pg; (2.5)

where

xk+q = S(iq) (2.6)

and iq; 1 � q � p, are the first p indices from the series (2.4) and the function S is
such that

xk+q 2 (xiq�1; xiq ): (2.7)
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In this case it is supposed that

p = p(Q) � �; Q > n: (2.8)

The class of parallel characteristical algorithms introduced includes two known
sets of purely sequential methods: the characteristically presented algorithms
[10,11], and the GA methods [17]. These sets include algorithms whose com-
puting scheme is easily derived from (2.1)–(2.8), if we assume in (2.8) that

p = p(Q) = 1; Q � 1;

i.e. all trials are successively performed by one processor. The sequential scanning
method, algorithms based on piecewise linear support functions (e.g. broken lines
method [19] by Piyavskii), information-statistic global search algorithms [26],
Kushner’s method [14], Bayesian algorithms (e.g. Zilinskas’ method [31]), and
Pinter’s methods [17] may all serve as examples of such algorithms.

Thus, the scheme (2.1)–(2.8) permits us both to construct parallel methods on
the basis of known sequential algorithms and to create new parallel methods having
no sequential prototypes. Below we present some parallel algorithms constructed
on the basis of the purely sequential characteristical algorithms mentioned above.
We use the following notations

�j = xj � xj�1; 1 � j � � ; zj = �(xj); 0 � j � �: (2.9)

EXAMPLE 1. The parallel scanning method.
The characteristic of interval (xi�1; xi) for this method is R(i) = xi � xi�1,

i.e., the length of the interval, and point xk+q 2 T (Q) is formed as

xk+q =
1
2
(xiq�1 + xiq ): (2.10)

EXAMPLE 2. Broken lines parallel method.
This method places two first trials on the ends of interval [a; b] and then follows

the basic characteristical rule with characteristics

R(i) =
m

2
�i �

1
2
(zi + zi�1); 1 � i � � = k � 1;

and trial points

xk+q =
1
2
(xiq�1 + xiq )�

ziq � ziq�1

2m
; 1 � q � p; (2.11)

where m > 0 is a parameter of the method.

EXAMPLE 3. The information algorithm with parallel iterations
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This algorithm [24] as a point of the first trial takes any inner point of the interval
[a; b] and then uses characteristics

R(1) = 2r!�1 � 4z1; (2.12)

R(�) = 2r!�� � 4z��1; (2.13)

R(i) = r!�i +
r(zi � zi�1)

2

!�i
� 2(zi + zi�1); 1 < i < �; (2.14)

where

! = maxfjzi � zi�1j=�i; 1 < i < �g; (2.15)

and r > 1 is a parameter of the method. If ! is impossible to determine according
to (2.15) or ! = 0, then ! = 1. The trial points are calculated according to (2.10),
if iq = 1 or iq = � and, according to (2.11), with the replacement of m by r!, if
1 < iq < � .

3. Convergence of Parallel Characteristical Algorithms

The definition of the characteristical algorithms introduced lacks the rule of
stopping computations, i.e. it is supposed that the algorithm generates an infi-
nite sequence of trials fxsg and a corresponding sequence fzsg of the values
zj = �(xj); j � 1. The properties of these sequences reflect those of an algo-
rithm itself. Therefore an investigation of optimization methods will be carried out
studying the sequences fxsg and fzsg generated by them. This is why the section
is devoted to the problem of the convergence of sequences fxsg.

Let us first introduce the notations

�i = minfzi�1; zig; (3.1)

where zi�1; zi are from (2.9),

�̂i =

8<
:
�i; if xi�1 2 fx

s
g and xi 2 fxsg;

zi�1; if xi�1 2 fx
s
g and xi 62 fxsg;

zi; if xi�1 62 fx
s
g and xi 2 fxsg.

(3.2)

THEOREM 1. Minimizing a function �(x); x 2 [a; b], by a parallel charac-
teristical algorithm, let for characteristics R(i), 1 � i � � , and trial points
xk+q; 1 � q � p, of the algorithm hold the following relations:

i. lim
Q!1

lim
xi�1!�x

xi!�x

R(i) = ���(�x) + c; (3.3)

ii. lim
Q!1

R(i) > ��i � ��̂i + c; (3.4)
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if (xi�1; xi) \ fx
s
g = ;;

iii. maxfxk+q � xi�1; xi � xk+qg � ��iq ; (3.5)

where �; c; �; � are constants, � � 0 and

0 < � < 1: (3.6)

Then, with � � 0 for any inner point x� 2 [a; b] being a limit point of the trial
sequence generated by the algorithm, there exist two subsequences of trials, one
of which converges to x� from the left, the other one from the right.

Proof. Let x� 62 fxsg and t = t(Q) be the number of the interval (xt�1; xt)
containing the point x� after the Q-th iteration. Since the point x� is a limit one,
then it follows from (2.7), (3.5), (3.6) that

lim
Q!1

�t = 0: (3.7)

Thus, as required subsequences we can use sequences fxt(Q)�1g and fxt(Q)g of
the left and right ends of intervals (xt�1; xt) accordingly.

If x� 2 fxsg, there will be such numbers u � 1 and s � k(u) that x� = xs 2
T (u). Then, for any Q > u there exists such a number j = j(Q) that xj = x�.
Let us assume that convergence to x� from the left is absent (the case when no
subsequence converging to x� from the right is considered identically). Then, there
will be such iteration number d � u and a trial number v > k(d) that xv 2 T (d)
and for all Q � d trials will not get into interval (xj�1; xj) = (xv; xs).

As a result of (3.4) we obtain

lim
Q!1

R(j) > ���(x�) + c; (3.8)

yet according to (3.3) for the adjacent interval (xt�1; xt); t = j + 1;

lim
Q!1

R(t) = ���(x�) + c: (3.9)

Therefore, the following inequality for a sufficiently large number Q will be true

R(j) > R(t): (3.10)

Because of decision rules (2.1)–(2.8), (3.10) contradicts to the impossibility of
performing trials within the interval (xj�1; xj).

NOTE. According to Theorem 1 for any interval (xt�1; xt); t = t(Q), containing a
limit point x� 2 [a; b] the relation (3.7) takes place (if x� = a or x� = b, unilateral
convergence is sufficient to fulfil (3.7)). The rules (2.4) and (2.7), together with
(3.7), allow us to determine the stopping condition of the type

min
1�q�p

�(xiq�1; xiq ) � "; (3.11)
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where �(�) is a continuous function possessing metrics properties, and " > 0 is a
preset search accuracy.

Let us now establish the truth of the theorem for concrete algorithms from
Section 2.

The fulfillment of the conditions of the theorem with � = 1
2 ; � = � = c = 0 is

evident for the scanning method (see Example 1).
Let us assume now that the function �(x) meets the Lipschitz condition with a

constant L > 0 within the interval [a; b].
Taking into account the Lipschitz condition, and making use of the relation

�i = minfzi�1; zig =
1
2
(zi�1 + zi � jzi � zi�1j); (3.12)

it is not difficult to show that Theorem 1 is true for the broken lines parallel method
(see Example 2) with � = c = 0; � = 1; � = 1

2

�
1 + L

m

�
if m > L.

Assuming that! from (2.15) is bounded, the information algorithm with parallel
iterations (see Example 3), insures the fulfillment of (3.3) with � = c = 0; � = 4,
and (3.5) with � = 1

2

�
1 + 1

r

�
. The truth of (3.4) for the characteristics (2.12) and

(2.13) is evident. As for characteristic (2.14), let us present it in the following form

R(i) = r!�i

�
�2
�

2�
r
+ 1
�
� 4�i

where � = jz1 � zi�1j=(!�1). In so far as � satisfies inequality 0 � � � 1, then

R(i) � r!�i(1� r�2)� 4�i >= 4�i:

THEOREM 2. Under the conditions of Theorem 1 with � = 0 and � � 0, any
point of the interval [a; b] is a limit point of the trial sequence fxsg generated by
the algorithm.

Proof. Let us assume that there exists a point �x 2 [a; b] which is not a limit
point of the trial sequence. We designate as j = j(Q) the number of an interval
(xj�1; xj), such that xj�1 � �x � xj . (If �x 2 (a; b) and for some u � 1 �x = xu,
then there exist two such intervals and one can take any of them). Starting from a
certain step, the trials will not fall into this interval; therefore, according to (3.4)

lim
Q!1

R(j) > c: (3.13)

On the other hand, due to the boundness of the interval [a; b], there exists at least
one limit point x� of the trial sequence fssg. For characteristics of the intervals
(xt�1; xt); t = t(Q), such that xt�1 � x� � xt according to (3.3) we have

lim
Q!1

R(i) = c: (3.14)

Due to (3.13), (3.14) for a sufficiently large numberQ inequality (3.10) holds. This
fact contradicts our initial assumption because of (2.4), (2.7).
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This theorem establishes the conditions of the so-called “everywhere dense” con-
vergence of parallel characteristical algorithms. At the same time, these conditions
are sufficient conditions of convergence to the global minimizer of the function
�(x), if convergence of the trial sequence fxsg to some point x̂ should be defined
as existence of a subsequence fxvg; fxvg � fxsg, converging to x̂.

The “everywhere dense” type of convergence is inherent, for example, to the
scanning method and methods [14, 31]. The other type of convergence is established
by the following theorem.

THEOREM 3. Let: (i) the objective function �(x); x 2 [a; b], be continuous and
the number of local extrema of �(x) be finite;

(ii) conditions (3.3)–(3.6) along with � > 0 and � � 0 hold for a parallel
characteristical algorithm;

(iii) the number p(Q) of parallel trials be uniformly limited, i.e.

p(Q) � P; Q > n; (3.15)

where P > 1 is a preset constant;
(iv) x� be a limit point of the trial sequence fxsg generated by the algorithm.
Then: (1) �(xs) � �(x�); s � 1;
(2) if there exists another limit point x�� alongside with x�, then �(x�) =

�(x��);
(3) the point x� is a local minimizer if the function �(x) has a finite number of

local extrema within the interval [a; b].
Proof. Let us denote by t = t(Q) the number of an interval (xt�1; xt) such

that xt�1 � x� � xt. Point out that according to Theorem 1 (3.9) is true for the
characteristic R(t) of this interval.

1. Proving the first assertion let us assume that as a result of an iteration with a
number d � 1, the trial in a point xm 2 T (d) results in getting value �(xm) which
is such that

�(xm) < �(x�): (3.16)

We designate by j = j(Q) the number of the point xm in the series (2.3) which
corresponds to the iteration with a number Q � d, i.e. xj = xm; zj = �(xm). Let
us show that the point xj is a limit point for the trial sequence fxsg also. If it is
not true, then for the characteristic R(j) of the interval (xj�1; xj) (if j = 0 it is
necessary to take the interval (xj; xj+1)) according to (3.4) we have

lim
Q!1

R(j) > ��zj + c: (3.17)

However, taking into account (3.9) and (3.16), we obtain that starting from a certain
step, inequality (3.10) holds. This fact contradicts to our assertion that xj is not a
limit point of fxsg.

Since the objective function �(x) is continuous, then inequality �(x) < �(x�),
x 2 �, is true in some neighbourhood� of the point x�. As the point xm is a limit
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point, this neighborhood will contain more than P + 1 points from fxsg, i.e. more
than P intervals formed by these points will have characteristics greater than the
characteristicR(t) from (3.9). This means that in accordance with the decision rule
(2.4) the trials will fall into the interval (xt�1; xt); yet this is impossible because
the point x� is the limit one.

2. To prove the second assertion it is sufficient to assume that �(x�) < �(x��).
In assuming this, however, we are immediately in contradiction with the first
assertion.

3. Let us assume that the point x� is not a local minimizer. Since the number
of local extrema of the function �(x) is finite, then there exists a neighbourhood
of the point x� within which the function �(x) is strictly monotonous: i.e. either
on the left or on the right of the point x�, the inequality �(x) < �(x�) is true. As
much as convergence to the point x� is bilateral (see Theorem 1), however, there
will be an obligatory point xm satisfying (3.16). (In the cases x� = a or x� = b,
unilateral convergence is sufficient.) This fact contradicts the first assertion of the
theorem.

Thus, when the conditions of Theorem 3 are fulfilled for a parallel characteristical
algorithm, its trial sequence fxsg can have only local and global minimizers as
limit points, and convergence to different-height minima is impossible. This type
of convergence is assured by the Piyavskii method [19] and by the whole spectrum
of information algorithms [24–26].

The assumptions of Theorem 3, providing local optimality of limit points,
do not guarantee convergence to global minimizers. Such guarantees (sufficient
conditions of global convergence) are given in the next section together with
a scheme generalizing one-dimensional characteristical algorithms to the multi-
dimensional case.

4. Multidimensional Optimization and Conditions of Global Convergence

There are several ways to extend the characteristical algorithms in order to solve
multidimensional global optimization problems which employ, for example, the
approaches proposed in [13, 18, 30]. In this section, we will consider another
approach (see [5,21,25]) based on Peano-type space-filling curves.

Consider the problem of finding the global minimum of a function �(z) of N
variables over a hyperinterval D:

�(z�) = minf�(z) : z 2 Dg; (4.1)

D = fz 2 RN : aj � zj � bj ; 1 � j � Ng; (4.2)

where, in general, �(z) is multiextremal.
If �(z) is continuous, then for the function

�(x) = �(z(x)); x 2 [a; b]; (4.3)
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where z(x) is the continuous Peano-type mapping of closed interval [a; b] onto the
hyperinterval D, we have

minf�(x) : x 2 [a; b]g = minf�(z) : z 2 Dg: (4.4)

Therefore, solving the multidimensional problem (4.1), (4.2) can be replaced by
solving the following one-dimensional problem

�(x�) = minf�(x) : x 2 [a; b]g (4.5)

with �(x) from (4.3).
As it has been shown in [25], if �(z) is Lipschitzean with a constant K > 0

then �(x) satisfies the Hölder condition

j�(x0)� �(x00)j � Ljx0 � x00j1=N ; x0; x00 2 [a; b]; (4.6)

with a constant L � 0 (Hölder constant). If N = 1 then (4.6) is the usual Lipschitz
condition.

For parallel characteristical algorithms the following theorem establishes suf-
ficient conditions of convergence to the global minima of the functions satisfying
(4.6) and, therefore, substantiates the capacity of methods to be considered for
solving the Lipschitzean multidimensional problems (4.1), (4.2) via the Peano-
type mappings.

THEOREM 4. Let a function, �(x), satisfy the Gölder condition (4.6). Assuming
that the parallel characteristical algorithm minimizing the function �(x) over [a; b]
meets the conditions (3.3), (3.5), (3.6) and, for all the intervals (xi�1; xi) such that
(xi�1; xi) \ fx

s
g = ;, the relation

lim
Q!1

R(i) > ��
1=N
i � ��̂i + c (4.7)

is fulfilled with

� � 2�1=N�L (4.8)

if xi�1 2 fx
s
g and xi 2 fxsg, and

� � 21�1=N�L (4.9)

in the opposite case.
Any global minimizer of the function �(x) in the interval [a; b] is then the limit

point of the trial sequence generated by the algorithm.
Proof. Let x� be a global minimizer of the function �(x), and j = j(Q) be the

number of an interval (xj�1; xj) such that xj�1 � x� � xj . Let us assume that x�

is not a limit point of the trial sequence fxsg. Starting from a certain step of the
search, then, trials will not fall into the interval (xj�1; xj).
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Being within the interval (xj�1; xj), the point x� can be represented as x� =
�xj�1 + (1� �)xj ; 0 � � � 1. Then, by virtue of (4.6) we obtain

zj�1 � �(x�) � L(x� � xj�1)
1=N = L(1� �)1=N�

1=N
j ;

zj � �(x�) � L(xj � x�)1=N = L�1=N�
1=N
j ;

from where

zj + zj�1 � 2�(x�) + L(�1=N + (1 � �)1=N )�j �

� 2�(x�) + L�
1=N
j maxf�1=N + (1� �)1=N

g =

= 2�(x�) + 21�1=NL�
1=N
j (4.10)

In the case of (4.8) �̂j = �j , and taking (3.12) into account, we have

lim
Q!1

R(j) >

�
��

1=N
j �

�

2
(zj + zj�1)

�
+ c

from which the following inequality holds as a result of (4.8)–(4.10):

lim
Q!1

R(j) > ���(x�) + c: (4.11)

Let it now be �̂j = zj in situation (4.9) (the case �̂j = zj�1 is considered
analogously). Then, taking into account (4.10)

lim
Q!1

R(j) > ��
1=N
j � �zj + c �

� ��
1=N
j � 2��(x�) + ��(xj�1)� 21�1=N�L�

1=N
j �

� (�� 21�1=N�L)�
1=N
j � ��(x�) + c �

� ���(x�) + c;

i.e. (4.11) is again true.
At the same time there exists at least one limit point �x of the trial sequence fxsg

because the search interval [a; b] is a bounded set. For the characteristic R(t) of an
interval (xt�1; xt) such that xt�1 � �x � xt we have

lim
Q!1

R(t) = ���(�x) + c: (4.12)

Conditions (4.11) and (4.12) allow us to draw the conclusion that starting from a
certain step of the searchR(j) > R(t)which brings the assertion about the absence
of trials in the interval (xj�1; xj) to the contradiction with (2.4).

NOTE. If � = 0, then the conditions of Theorem 4 coincide with the assumptions
of Theorem 2, and it is not necessary to suppose (4.6) for the function �(x).
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Thus, Theorem 4 formulates requirements upon whose completing the sequence
of trials of the parallel characteristical algorithm have all global minimizers as limit
points. If in this case � > 0, and the number of parallel processors is uniformly
limited, then no other points can be limit points for this sequence. Note that in
the set of sequential methods the similar property is assured: for instance, by the
methods [13, 17, 19, 21, 22, 26].

The global convergence conditions for concrete known representatives of char-
acteristical class are a partial case of the general results of Theorem 4. For illustra-
tion, assume that the function to be minimized meets the Lipschitz condition that
corresponds to N = 1 in (4.6) and consider two examples.

First, we will deal with the algorithm [24] for which � = 4 and c = 0 in
relations (3.3) and (4.7). Its characteristics (2.14)

R(i) � r!�i �
�

2
(zi + zi�1) � r!�i � ��i

as from (3.12) �i � 1
2(zi + zi�1). Then (4.7) holds if

r! > 2L: (4.13)

It is easy to derive the same inequality for characteristics (2.12) and (2.13). But
(4.13) coincides with the global convergence condition from [24].

As the second example we consider the broken lines parallel method (� =
1; c = 0). In the sequential variant, it is similar to the Piyavskii algorithm [19].
Following the reasonings of the previous example we obtain for the characteristics
of this method

R(i) �
m

2
�i � ��i

from where (4.7) is true if m=2 > �L=2, or m > L. For the Piyavskii algorithm m
has a geometrical interpretation as the slope of linear pieces of the support function.
So, the basic condition of application for the method [19] can be considered as the
consequence of characteristical theory.

The above methods can be generalized [23–25] for the case of Hölder functions
(4.6). These modified algorithms being also the characteristical methods can be
applied for solving the multidimensional problems (4.1) and (4.2) by means of the
reduction scheme (4.3)–(4.5). Formally, the generalization consists in using the
expression

xk+q =
1
2
(xiq�1 + xiq)�

�(2r)�1(jziq � ziq�1j!
�1) sign(ziq � ziq�1) (4.14)

instead of (2.11), and in the replacement of the Eucleadean length �j from (2.9)
by the Höleerian length �j = (xj�xj�1)

1=N in the characteristics of the methods
and in the estimate (2.15).
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The analogous consideration of the generalized methods in the frame of charac-
teristical theory leads to the same global convergence conditions which have been
derived in [23–25].

5. Conditions of Nonredundant Parallelization

The parallelization of the sequential characteristical algorithms by the scheme
(2.1)–(2.8) results in giving up a portion of the search information when choosing
trial points. In fact, the values of the objective function at the points of all preceding
trials are known for the sequential algorithm at the moment of selecting a point
xk+1 for the next trial (see (2.6) with q = 1). In the parallel method, the choice of
the pointsxk+j , 1 < j � p = p(Q), from (2.6) at theQ-th iteration is made without
taking into consideration the function values at the points xk+1; . . . ; xk+j�1 which
have not been evaluated yet. The higher is the level of parallelization determined
by conditions (2.2)–(2.8) and the function p(Q), the more significant are the losses
of information in planning trials, and these losses are most considerable in the case
of complete parallelization when p(Q) = �(Q).

Incomplete account of information can bring up the situation when the paral-
lel algorithm produces the trials more densely in comparison with its sequential
prototype, i.e. it generates redundant trials.

Following [25], let us introduce a number of notions. Let fxkg and fymg be
infinite (with " = 0 in stopping condition (3.11)) sequences of trial points generated
accordingly by a purely sequential characteristical algorithm and its parallel analog
in case of minimizing the same function �(x); x 2 [a; b]. Coincidence of these
sequences, i.e.

fxkg = fymg; (5.1)

means that the parallel algorithm places trials at the same points where the purely
sequential method executes trials. Note that (5.1) does not require the fulfillment
of xs = ys; s � 1. When condition (5.1) takes place parallelization is called
nonredundant. But if condition (5.1) is not observed, it means that the parallel
scheme possesses some redundancy. Let us introduce a redundancy coefficient for
its quantitative characteristic

�(m; s) = T 0(m; s)=(m� s);m > s; (5.2)

where

T 0(m; s) = card(fys+1; . . . ; ymgnfxkg) (5.3)

is the number of redundant points in fymg from the (s + 1)-th to the m-th trial.
This definition presupposes that inclusion fxkg � fymg takes place. It is evident
that �(m; 0) = 0 corresponds to the nonredundant case (5.1).
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Let us consider parallel characteristical algorithms processing with two trials in
every iteration after n initial steps (here in after we suppose that in the course of
these n iterations K trials have been done), i.e.

p(Q) = 2; Q > n; (5.4)

To continue we need a number of nonburdensome assumptions. We suppose
that if trials have been executed in both the ends of a subinterval (xj�1; xj) then a
new trial points xk+q 2 (xj�1; xj) can be expressed as follows

xk+q = cj + sign(zj�1 � zj)�j ; (5.5)

cj = (xj�1 + xj)=2; (5.6)

0 � �j � ��j ; (5.7)

where �j is from (2.9) and 0 < � � 0:5: Note that (5.5)–(5.7) implicate (3.5) if
� = 1

2 + �.
If one of the ends of a subinterval (xj�1; xj) is not the trial point then we use

xk+q = cj: (5.8)

Along with (5.5) and (5.8), assume that characteristics R(i); 1 � i � � , and
values �j ; 1 � j � p, are completely determined by the points xj�1, xj of the
corresponding subintervals and by the values of the objective function evaluated
at these points, i.e.

R(i) = 	(xj�1; xj; zj�1; zj); (5.9)

�j = �(xj�1; xj ; zj�1; zj): (5.10)

Let us also assume that

ys = xs; 1 � s � K; (5.11)

i.e. initial steps of the search for the sequential and parallel methods not connected
with characteristical decision rules (2.4)–(2.7), are identical.

THEOREM 5. Let: (i) the objective function �(x); x 2 [a; b], meet Lipschitz con-
dition with a constant L;

(ii) conditions (5.4), (5.5), (5.7), (5.9)–(5.11), (3.3), � > 0 be fulfilled for
sequential and parallel schemes of a characteristical algorithm;

(iii) for �i > 0 it follow

R(i) > ��i � ��̂i + c: (5.12)

Then with � � 1
6 and

� > �L (5.13)
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the inequality

�(m;K) � E[(m�K)=6]=(m�K) < 0:17 (5.14)

takes place. Here E[d] is integer part of d.
Proof. If after the m-th trial of the parallel method and the k-th trial of the

sequential method, the equality

(yt�1; yt) = (xq�1; xq); t = t(m); q = q(k); (5.15)

is true and the next trials at points ym+1 and xk+1 respectively get into indicated
intervals. Then on account of (5.9)

R(t(m)) = R(q(k)) (5.16)

and according to (2.6), (5.5), (5.8), (5.10) we have

ym+1 = xk+1: (5.17)

From (5.11) with m = k = n on account of (5.15)–(5.17) and decision rules
(2.4)–(2.7) we obtain that

fxkg � fymg: (5.18)

Inclusion (5.18) makes it possible to evaluate redundancy with the help of the
coefficient (5.2).

The truth of conditions (3.3), (3.13), (5.13) and (3.5) with � = 0:5 + � ensures
for the accomplishment of the requirements of Theorem 4; therefore only the
global minimizers of the function �(x) can be limit points of the sequences fxkg
and fymg. Thus, the set of limit points of the sequence fymg coincides with the
set of limit points of the sequence fxkg.

Let the first k points of the sequence fxkg be arranged in accordance with (2.3)
and j = j(k) be the number of an interval (xj�1; xj) such that xj�1 � x� � xj ,
where x� is a global minimizer of �(x). Due to (5.12), (5.13) and the Lipschitz
condition for �(x), the relation

R(j) > ���(x�) + c (5.19)

is true for the characteristic of this interval. As far as point x� is the limit point,
then because of (3.3)

R(j(k))! ���(x�) + c+ 0;

if k !1.
Taking into consideration (2.4) it follows from (5.19) that any interval (xi�1; xi),

i = i(k), whose characteristic satisfies (5.19) contains at least one point of the
sequence fxkg. At the same time any interval (xi�1; xi) for which

R(i) < ���(x�) + c (5.20)



PARALLEL CHARACTERISTICAL ALGORITHMS 199

is true, does not contain points of the sequence fxkg. Thus, we have obtained that
redundant trials of the parallel method can be executed only in the intervals for
which inequality (5.20) is true.

Let us again consider the interval [xj�1; xj]; j = j(k), containing the global
minimizer x�. The next trial executed at a point x = xk+1 belonging to this interval
generates two new subintervals

[xj�1; x]; [x; xj ] (5.21)

one of which contains x�. Let it be the first of them, i.e.

x� 2 [xj�1; x]: (5.22)

The truth of inequality (5.19) for the interval (xj�1; x) from (5.21) comes out of
(5.22). Let us show that this inequality is also true for the interval (x; xj). We need
the following designations

�x = xj � x; �x = minfzj ; zg; z = zk+1: (5.23)

Suppose that the previous story of the search is such that the points xj�1 and xj
were the trials points: i.e. values zj�1 and zj have been calculated. Let us evaluate
the magnitude �x. Consider the case zj�1 < zj . Then, according to (5.22), (5.5),
(5.7), (5.23)

x� � x = cj � �j � cj ;

�x � z � �(x�) + L(x� x�) � �(x�) + L�x: (5.24)

If zj�1 � zj , we consider two cases. In the first of them when x� > cj , we have

�x � z � �(x�) + L(x� x�) < �(x�) + L(x� cj) =

= �(x�) + L�j � �(x�) + L��j � �(x�) + L�x;

as far as � � 1
6 and �x � (0:5� �)�j .

In the second case when x� � cj , we obtain

�x = 0:5(zj + z � jzj � zj) � 0:5(zj + z) �

� 0:5(zj�1 + z) � �(x�) + 0:5L(x� xj�1) �

� �(x�) +
L(1 + 2�)
2(1� 2�)

�x � �(x�) + L�x:

This inequality allows us to estimate characteristic Rx of the interval (x; xj):

Rx > ��x � ��x + c � (�� �L)�x � ��(x�) + c

from where, taking into account (5.13), it comes out that

Rx > ���(x�) + c: (5.25)
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Inequality (5.25) is also true if xj 62 fxsg, since in this case, according to (5.8),
x = cj . As the Lipschitz condition is satisfied for �(x), we have z � �(x�)+L�x;
therefore

Rx > ��x � �z + c � (�� �L)�x � ��(x�) + c:

Thus, if after k trials there exists a pair of intervals of type (5.21), then the
choice of two trials simultaneously in accordance with decision rule (2.1)–(2.8)
and (5.4) cannot generate redundant trials. After K initial trials (see 5.11) during
n iterations, the worst situation (in the sense of generating redundant trials during
the next step) can be the situation when there exists only one interval satisfying
condition (5.19): the interval of type (5.22). Consequently, one redundant point
will be obtained at the (n+ 1)-th iteration.

The second trial of this iteration will result in the appearing of the pair (5.21).
In this case, no other intervals for which inequality (5.19) is true can be outside
the interval (5.22). This means that the next points ym 2 fxkg may lay only in the
interval (5.22) which already contains one trial and that the (n+2)-th iteration will
take place in it. If one of trials of the (n+3)-th pair falls into (5.22), it will result in
the appearing of a new pair of type (5.21). Consequently, the source of redundant
trials can only be the situation when the next pair contains points from (x; xj) but
does not contain points from (5.22). If it happens at the (n + 3)-th iteration, then
the (n + 4)-th iteration can place one point in interval (5.22), and another one in
some interval (xi�1; xi) whose characteristic satisfies condition (5.20). The last
point will be redundant. It will be followed by creating the situation identical to
the position after executing the (n+ 1)-th iteration.

Thus, not more than one redundant trial can be obtained during six trials. This
means that inequality (5.14) is true.

COROLLARY 1. If the objective function �(x) has H global minimizers and
between every pair of them at least one point from fymg has been placed in the
course of starting n iterations, then, given conditions of theorem 6, a parallel char-
acteristical algorithm with 2H parallel processors provides fulfillment of (5.14).

Proof. The proof is obvious and we omit it.

6. Numerical Experiments

As an illustration we adduce results of numerical experiments executed on an
ALLIANT FX/80 Departmental Mini-Supercomputer [1] with 4 vector processors.
Three series of experiments have been done for testing one and multidimensional
parallel characteristical algorithms.
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We consider the case when the time required for executing trials is much greater
than all the other times required for the algorithms functioning. Thus, we can use
the speed up in iterations calculated as

s(p) = n(1)p=n(p); p > 1;

for estimating efficiency of the methods. Here n(1) is the number of trials done
by a sequential characteristical algorithm (after executing the starting trials) for
solving a problem and n(p) is one for solving the same problem by the parallel
method with p parallel processors for every iteration.

In the first case we use known test functions (see [12]) for testing one-dimensional
parallel characteristical algorithms. We construct parallel characteristical algo-
rithms on the basis of the purely sequential methods proposed by Kushner (Method
1), Piyavskii (Method 2). The parallel method proposed in [24] generalizing Stron-
gin’s algorithm is the third method tested. We have taken three functions from [12]
and the following starting points for all the methods:

PROBLEM 1. Function 2, starting points 3, 4, 5.

PROBLEM 2. Function 9, starting points 5, 8, 11.

PROBLEM 3. Function 19, starting points 1, 2, 3.

In methods 1 and 2, starting trials have been also done at the margin points a and
b of the corresponding search regions [a; b]. For these methods we have used the
exact Lipschitz constants in opposite with method 3 where the adaptive estimate !
and the parameter r = 2 (see (2.12)–(2.15)) have been used. For all experiments
we have taken accuracy " = 0:0001(b� a) in the stopping rule (3.11). Results of
the experiments are shown in Table I. Global solutions have been found in all the
cases. Sometimes for methods 1 and 3 we have speed up greater than the number
of the parallel processors used. This situation is possible as in these algorithms
the behavior of the objective functions is adaptively estimated. For example, if
in method 3 the Lipschitz constant is estimated better by the parallel version, the
search is accelerated. Note that the following situation can take place due to the
stopping rule (3.11):

n(1)� n(p) < p; p > 1; (6.1)

See, for example, the results of method 2 for Problem 2.
The second and third series of the experiments deal with testing the multidimen-

sional parallel characteristical algorithms created in accordance with the approach
of Section 4. In the second series we maximize 100 two-dimensional functions

�(z) =

8><
>:

0
@ 7X

i=1

7X
j=1

(Aijgij(z) +Bijhij(z)

1
A

2

+
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Table I. Numerical results for univariate functions.

NP P Method 1 Method 2 Method 3
Trials Speed up Trials Speed up Trials Speed up

1 1 4252 – 151 – 120 –
2 4353 1.95 151 2.0 119 2.02
3 4352 2.93 155 2.92 162 2.21
4 4353 3.91 157 3.83 163 2.93

2 1 4622 – 124 – 125 –
2 4621 2.0 123 2.02 125 2.0
3 4622 3.0 122 3.05 126 2.98
4 4373 4.24 125 3.97 127 3.94

3 1 2780 – 126 – 148 –
2 2779 2.0 127 1.98 153 1.93
3 2762 3.02 128 2.95 159 2.79
4 2769 4.02 133 3.78 163 3.63

NP – number of problem
P – number of parallel processors

+

0
@ 7X

i=1

7X
j=1

(Cijgij(z)�Dijhij(z)

1
A

2
9>=
>;

1=2

;

where z = (z1; z2) 2 R2; 0 � zs � 1; s = 1; 2;

gij(z) = sin(i�z1) sin(j�z2);

hij(z) = cos(i�z1) cos(j�z2);

Aij; Bij ; Cij ;Dij are random coefficients uniformly distributed on the interval
[�1; 1].

All the experiments have been executed with the accuracy "= 0:001 from (3.11)
in Hölder’s metrics. Two parallel characteristical algorithms have been tested. The
first one is the parallel algorithm proposed in [22] where (as in Piyavskii’s method)
an estimate of the Lipschitz constant taken a priori has been used. This estimate
has been obtained by evaluating the objective functions at 2000 points taken on
a uniform mesh. Numerical results for this method (see Method 4) are shown in
Table II. The global solutions have been found for 99 functions. In the unique case
it has not been done by both the sequential and the parallel methods because the
estimate was less than the real Lipschitz constant. Method 5 presented in Table
II is the parallel information algorithm (see [25]). The global solutions have been
found for all 100 functions.
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Table II. Average results for 100 two-dimensional functions

Number of Method 4 Method 5
processors Trials Speed up Trials Speed up

1 1013.25 – 1575.12 –
2 1012.82 2.001 1596.08 1.974
3 1012.33 3.003 1562.61 3.024
4 1012.00 4.005 1599.92 3.938

Figure 1. Two-dimensional section of the test function (6.2).

The third group of the test experiments consists in the minimization of the
multidimensional functions

f(z) = (�=N)fsin2(�y1) + 5(yN � 1)2 +

+
N�1X
i=1

[(yi � 1)2(1 + sin2(�yi+1))]g (6.2)

where

yi = 1 + 0:25(zi � 1) and � 10 � zi � 10; 1 � i � N;

for the dimensions N = 2; 3; 4. This function is the modified test function from
[15]. Figure 1 shows a two-dimensional section of the function (6.2) depending on
4 variables. This section corresponds to fixed coordinates z1 = �8; z2 = 9 and to
free coordinates z3 and z4.

We have considered two characteristical algorithms: parallel technique [25]
(Method 5) and the broken lines parallel algorithm generalized for the multidimen-
sional optimization according to the scheme of Section 4 (see (4.14)) and further
referred to as Method 6. For both the methods we have taken accuracy " = 10�5
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Table III. Numerical results for Problem (6.2)

Dimension Number of Method 5 Method 6
processors Trials Speed up Trials Speed up

2 1 1082 – 1027 –
2 1084 1.996 1028 1.998
3 1083 2.997 1050 2.934
4 1136 3.810 1224 3.356

3 1 4784 – 4649 –
2 4776 2.003 5018 1.853
3 4776 3.005 4647 3.001
4 4768 4.016 4480 4.151

4 1 7958 – 6274 –
2 7876 2.021 5238 2.396
3 6750 3.537 6486 2.902
4 7820 4.072 6468 3.880

in (3.11) and have used the adaptive estimate of the Lipschitz constant m = r!,
where ! from (2.15) and r > 1 is a parameter of methods. The initial stages of
the search while solving the problem (4.5) were the same and included trials at the
points 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 of the interval [0,1]. Having taken into account the
condition (4.9) we have chosen parameter r = 3:5 for the Method 5 and r = 1:7
for Method 6 in order to provide the sufficient conditions of convergence to global
minima which have been found in all the searches.

The results of the experiments are contained in Table III. We have already
noted above that adaptive estimation of the behavior of the function can lead to the
situation when the speed up exceeds the number of parallel processors used (see
Table III).

On the whole, the numerical experiments confirm the basic theoretical results
of the paper concerning the convergence and efficiency of parallelization and
demonstrate the applicability of the parallel characteristical algorithms for solving
the multidimensional multiextremal problems.

7. Conclusion

In this paper a class of parallel characteristical algorithms for global optimization
of one-dimensional multiextremal functions has been introduced. To illustrate the
general approach examples of the algorithms have been presented. General condi-
tions of “everywhere dense”, local and global convergence have been established
for the class. Efficiency conditions for the parallel algorithms of the introduced
class in comparison with their sequential versions have been obtained. A general-
ization for multidimensional case has been done. Numerical experiments executed
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on a parallel computer with one and multidimensional methods on test functions
taken from literature have been also presented.
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