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Abstract. A class of parallel characteristical algorithms for global optimization of one-dimensional
multiextremal functions is introduced. General convergence and efficiency conditions for the algo-
rithms of the class introduced are established. A generalization for the multidimensional case is
considered. Examples of parallel characteristical algorithms and numerical experiments are present-
ed.
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1. Introduction

Inthispaper weintroduceaclassof parallel algorithmsto solvetheone-dimensional
global optimization global optimization problem over an interval, i.e. to find the
absolute minimum of areal-valued function ¢(z), z € [a, b]. Many known methods
were designed for sequential computers (see, e.g. [2,8, 10-14, 17-19, 21, 26, 30—
31]) andtherefore executed trials (eval uations of the objectivefunction) sequential-
ly. Parallel algorithms under consideration perform several trials simultaneously
during each iteration — one trial at each of the processors of the multiprocessor
system the algorithm is implemented on. Such a procedure allows us to accelerate
solving the problems in which the performance of even one trial requires alot of
time.

Different approachesto designing the parallel computational methodsare given
in[3, 4, 6, 7, 16, 20, 27-29]. In particular, parallel computations can be used
to accelerate executing the optimization algorithm decision rules and to decrease
the time of conducting each trial (i.e. computing the function value in one point).
Anyhow, such parallelization is specific for each concrete algorithm and concrete
problem, whereas the subject under consideration in this paper is the construction
of some general principles of parallel choice of trial pointsfor the class of parallel
characteristical algorithms.

The paper is structured as follows. Section two introduces the class of par-
ald characteristical algorithms and gives examples of algorithms belonging to
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this class. Conditions providing various kinds of convergence for paralel char-
acteristical agorithms are established in Section three. Section four is devoted
to a generalization of the multidimensional case. Efficiency of parallelization is
theoretically estimated in Section 5, while results of numerical experiments are
described in Section 6. Section 7 concludes the paper.

2. Parallel Characteristical Algorithms

A global optimization algorithm minimizing a function ¢(z), z € [a, b] iscaled a
parallel characteristical algorithmif trial points are chosen according to the rules
found below.

Trias of the first n > 1 iterations are performed in arbitrary K = k(n) =
p(1) +p(2) + - - - + p(n) pointsof theinterval [a, b], wherep(i), 7 > 1, denotesthe
number of trials of the i-th iteration. Trial points corresponding to any subsequent
Q-thiteration, Q > n, are chosen according to therule:

(2) points of the set

X, = {1 ..., 2"}y U {a} U {b}, (2.1)

including the boundaries of the interval [a, b] and the coordinates z7,1 < j < k,
of preceding trials, where

k=kQ@—-1=plQ)+ - +p(Q@-1) (2.2)
are renumbered (by subscripts) in the order of increasing the coordinates, namely
a=x0<zT1<--<T;=>b (2.3)

wherer + 1 = 7(Q) + listhe quantity of (different) elements of the set X}, from
(2.2);

(2) areal number R(7) is assigned to each subinterval (z;_1,z;),1 < i < T,
where R(:) is called the characteristic of this subinterval;

(3) characteristics R(i) of the subintervals (z;_1,z;),1 < i < 7, are ordered
by decreasing

R(i1) > R(i2) > -+ > R(ir); (2.4)
(4) the next p trials of the Q-th iteration are performed in the points of the set
T(Q) = {«**1,... F*P}, (2.5)
where
2F T = S (iy) (2.6)

and iy, 1 < g < p, arethefirst p indices from the series (2.4) and the function S'is
such that

$k+q € (:L"Z'q,]_,wiq). (27)
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In this caseit is supposed that

p=p@Q) <7, Q@>n (2.8)

The class of paralel characteristical algorithmsintroduced includestwo known
sets of purely sequential methods: the characteristically presented algorithms
[10,11], and the GA methods [17]. These sets include algorithms whose com-
puting schemeis easily derived from (2.1)—(2.8), if we assumein (2.8) that

p=pQ) =1 Q=>1,

i.e. al trials are successively performed by one processor. The sequential scanning
method, algorithms based on piecewise linear support functions (e.g. broken lines
method [19] by Piyavskii), information-statistic global search algorithms [26],
Kushner’'s method [14], Bayesian algorithms (e.g. Zilinskas' method [31]), and
Pinter’'s methods [17] may all serve as examples of such algorithms.

Thus, the scheme (2.1)—(2.8) permits us both to construct parallel methods on
the basisof known sequential algorithmsand to create new parallel methods having
no sequential prototypes. Below we present some parallel algorithms constructed
on the basis of the purely sequential characteristical algorithms mentioned above.
We use the following notations

Aj::rj—:rj,l,lgjgr;zj:qb(xj), 0<j < (29)

EXAMPLE 1. The parallel scanning method.
The characteristic of interval (z;_1, ;) for thismethod is R(i) = z; — z;_1,
i.e., the length of theinterval, and point 2+ € T'(Q) isformed as

1
gFe = é(xiq_l + {L‘iq). (2.10)
EXAMPLE 2. Broken lines parallel method.
Thismethod placestwo first trials on the ends of interval [a, b] and then follows
the basic characteristical rule with characteristics

. m 1

and trial points

(zi + zi—1), 1l<i<7t=k-1,

1 Zi — 2 1
k+q _ i i
T q—i(xiqfl‘l'xiq)_#

where m > 0isaparameter of the method.

1< q<p, (2.11)

EXAMPLE 3. The information algorithm with parallel iterations
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Thisalgorithm[24] asapoint of thefirst trial takesany inner point of theinterval
[a, b] and then uses characteristics

R(1) = 2rwA; — 4z, (2.12
R(T) = 2roA; — 4z, 1, (2.13)
. T’(Zi — Zi,l)z i
R(i) = rwli+ —=——= = 2z + 2i1), 1<i<r, (2.14)
wWay;
where
w = max{|zl — Zi,1|/Ai, 1<i< 7'}, (215)

andr > lisaparameter of the method. If w isimpossible to determine according
to (2.15) or w = 0, then w = 1. Thetria points are calculated according to (2.10),
if i = 1ori, = 7 and, according to (2.11), with the replacement of m by rw, if
1<ig <.

3. Convergenceof Parallel Characteristical Algorithms

The definition of the characteristical agorithms introduced lacks the rule of
stopping computations, i.e. it is supposed that the algorithm generates an infi-
nite sequence of trials {z°} and a corresponding sequence {z°} of the values
2J = ¢(x7),7 > 1. The properties of these sequences reflect those of an algo-
rithm itself. Therefore an investigation of optimization methodswill be carried out
studying the sequences {z*} and {z®} generated by them. Thisiswhy the section
is devoted to the problem of the convergence of sequences {z°}.
Let usfirst introduce the notations

0; = min{zi,l,zi}, (31)
where z; 1, z; arefrom (2.9),

. (Si, ifz,_ 1€ {:L"s} and z; € {:L"s};
0; = Zi—1, ifr;_1€ {:L"s} and z; € {:L"s}; (32)
2, if ;o1 & {z°} and z; € {z°}.

THEOREM 1. Minimizing a function ¢(z),z € la,b], by a parallel charac-
teristical algorithm, let for characteristics R(i), 1 < ¢ < 7, and trial points
azk+q, 1 < ¢ < p, of the algorithm hold the following relations:

i. lim lim R(i) = —udZ) +c (3.3)
Q—00 T;_1—T
T;—T

ii. lim R() > al; — ud; +ec, (3.4)

Q—00
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if (-1, 2;) N {z°} = 0;
iii. max{z*t9 — 3,4, 3 — 2P} <wA (3.5
where u, ¢, a, v are constants, ;» > 0 and
O<v<l (3.6)

Then, with o > 0 for any inner point z* € [a, b] being alimit point of the trial
sequence generated by the algorithm, there exist two subsequences of trials, one
of which convergesto z* fromthe left, the other one fromtheright.

Proof. Let z* ¢ {z°} and t = ¢(Q) be the number of the interval (z;_1, ;)
containing the point z* after the Q-th iteration. Since the point z* is alimit one,
then it follows from (2.7), (3.5), (3.6) that

lim A, =0. (3.7)
Q—0o0

Thus, as required subsequences we can use sequences {z;g)—1} and {z;)} of
the left and right ends of intervals (x;_1, ;) accordingly.

If z* € {z*}, there will be such numbersu > 1and s > k(u) that z* = z° €
T(u). Then, for any ) > u there exists such a number j = j(Q) that z; = z*.
Let us assume that convergence to z* from the left is absent (the case when no
subsequenceconvergingto z* fromtheright is consideredidentically). Then, there
will be such iteration number d > v and atrial number v > k(d) that =z € T'(d)
andfor all @ > d trialswill not get into interval (z;_1,z;) = (2", z°).

Asaresult of (3.4) we obtain

lim R(j) > —po(z*) + ¢, (3.8
Q—00

yet according to (3.3) for the adjacent interval (z;—1, z;),t = 7 + 1,
lim R(t) = —pd(z*) + c. (3.9

Q—o0

Therefore, the following inequality for a sufficiently large number @ will be true
R(j) > R(t). (3.10)

Because of decision rules (2.1)—«2.8), (3.10) contradicts to the impossibility of
performing trials within the interval (z; 1, z;). u

NOTE. Accordingto Theorem 1 for any interval (z;—1, z;),t = t(Q), containing a
limit point z* € [a, b] the relation (3.7) takes place (if * = a or z* = b, unilatera
convergence is sufficient to fulfil (3.7)). The rules (2.4) and (2.7), together with
(3.7), dlow usto determine the stopping condition of the type

1§mq|2p IO(x'Lq*JJ xlq) X6, (3'11)
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where p(e) is a continuous function possessing metrics properties, and ¢ > Oisa
preset search accuracy.

Let us now establish the truth of the theorem for concrete algorithms from
Section 2.

The fulfillment of the conditions of the theorem with v = %, a=p=c=0is
evident for the scanning method (see Example 1).

Let us assume now that the function ¢(z) meets the Lipschitz condition with a
constant L > O within theinterval [a, b].

Taking into account the Lipschitz condition, and making use of the relation

51' = min{zi_l,zi} = %(
itisnot difficult to show that Theorem 1 istrue for the broken lines parallel method
(seeExample2) witha = c =0, =1,v =3 (1+ L) ifm > L.

Assuming that w from (2.15) isbounded, theinformation algorithm with parall el
iterations (see Example 3), insures the fulfillment of (3.3) witha =c¢ =0, u = 4,
and (3.5) with v = 3 (1 + %). The truth of (3.4) for the characteristics (2.12) and
(2.13) isevident. Asfor characteristic (2.14), let uspresent it in the following form

R(i) = rwh; (52 _b, 1) — 45;

Zi1+ 2z — |2 — zi-1), (312

,
where 8 = |21 — z;—1|/(wA1). In sofar as § satisfiesinequality 0 < 5 < 1, then
R(i) > rwA;(1 —r2) — 46; >= 44;.

THEOREM 2. Under the conditions of Theorem 1 with , = 0 and o > 0, any
point of the interval [a, b] isa limit point of the trial sequence {z*} generated by
the algorithm.

Proof. Let us assume that there exists a point z € [a, b] which is not a limit
point of the trial sequence. We designate as j = j(Q) the number of an interval
(xj_1,zj), suchthat z;_1 <z < z;. (If z € (a,b) and for somew > 1 z = z*,
then there exist two such intervals and one can take any of them). Starting from a
certain step, the trials will not fall into thisinterval; therefore, according to (3.4)

Jim R(j) > c. (3.13)

On the other hand, due to the boundness of the interval [a, b], there exists at least
one limit point z* of the trial sequence {s°}. For characteristics of the intervals
(24—1,7¢),t = t(Q), such that z;_1 < z* < x; according to (3.3) we have
lim R(i) = c. (3.14)
Q—0
Dueto (3.13), (3.14) for asufficiently large number @) inequality (3.10) holds. This
fact contradicts our initial assumption because of (2.4), (2.7). |
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This theorem establishes the conditions of the so-called “everywhere dense” con-
vergence of parallel characteristical agorithms. At the sametime, these conditions
are sufficient conditions of convergence to the global minimizer of the function
¢(x), if convergence of the trial sequence {x*} to some point & should be defined
as existence of a subsequence {z"}, {z"} C {z°}, convergingto z.

The “everywhere dense” type of convergence is inherent, for example, to the
scanning method and methods|[14, 31]. Theother type of convergenceisestablished
by the following theorem.

THEOREM 3. Let: (i) the objective function ¢(z),z € [a, b], be continuous and
the number of local extrema of ¢ () befinite;

(i) conditions (3.3)—(3.6) along with x > 0 and « > 0 hold for a parallel
characteristical algorithm;

(iii) the number p(Q) of parallel trials be uniformly limited, i.e.

p(@Q) <P, Q>n, (3.15)

where P > 1isa preset constant;

(iv) =* bealimit point of the trial sequence {z*} generated by the algorithm.

Then: (1) ¢(z°) > P(z*), s>1;

(2) if there exists another limit point z** alongside with z*, then ¢(z*) =
P(z™);

(3) the point z* is a local minimizer if the function ¢(z) has a finite number of
local extrema within the interval [a, b].

Proof. Let us denote by ¢ = #(Q) the number of an interval (z;_1, ;) such
that z; 1 < z* < z;. Point out that according to Theorem 1 (3.9) is true for the
characteristic R(t) of thisinterval.

1. Proving the first assertion let us assume that as a result of an iteration with a
number d > 1, thetrial inapoint ™ € T'(d) resultsin getting value ¢(z) which
is such that

P(z™) < P(z*). (3.16)

We designate by j = j(Q) the number of the point z™ in the series (2.3) which
corresponds to the iteration with anumber @ > d, i.e. z; = 2™, 2z; = ¢(2™). Let
us show that the point z; is alimit point for the trial sequence {z°} aso. If it is
not true, then for the characteristic R(j) of the interval (z;_1,z;) (if j = 0itis
necessary to take the interval (z;, x;41)) according to (3.4) we have

lim R(j) > —pzj +c. (3.17)
Q—00

However, taking into account (3.9) and (3.16), we obtain that starting from acertain
step, inequality (3.10) holds. This fact contradicts to our assertion that z; is not a
limit point of {z*}.

Since the objective function ¢(x) is continuous, then inequality ¢(z) < ¢(x*),
x € A, istruein some neighbourhood A of the point z*. Asthe point =™ isalimit
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point, this neighborhood will contain more than P + 1 points from {z*}, i.e. more
than P intervals formed by these points will have characteristics greater than the
characteristic R(t) from (3.9). Thismeansthat in accordancewith the decisionrule
(2.4) the trials will fall into the interval (x;_1,z;); yet thisis impossible because
the point z* isthe limit one.

2. To prove the second assertion it is sufficient to assume that ¢(z*) < ¢(z**).
In assuming this, however, we are immediately in contradiction with the first
assertion.

3. Let us assume that the point z* is not alocal minimizer. Since the number
of local extrema of the function ¢(z) is finite, then there exists a neighbourhood
of the point z* within which the function ¢(x) is strictly monotonous: i.e. either
on the left or on the right of the point =*, the inequality ¢(z) < ¢(z*) istrue. As
much as convergence to the point =* is bilateral (see Theorem 1), however, there
will be an obligatory point =™ satisfying (3.16). (In the cases z* = a or z* = b,
unilateral convergenceis sufficient.) This fact contradicts the first assertion of the
theorem. [ ]

Thus, when the conditions of Theorem 3 are fulfilled for a parallel characteristical
algorithm, its trial sequence {z°} can have only local and globa minimizers as
limit points, and convergenceto different-height minimaisimpossible. This type
of convergenceis assured by the Piyavskii method [19] and by the whol e spectrum
of information algorithms [24—26].

The assumptions of Theorem 3, providing local optimality of limit points,
do not guarantee convergence to global minimizers. Such guarantees (sufficient
conditions of global convergence) are given in the next section together with
a scheme generalizing one-dimensional characteristical algorithms to the multi-
dimensional case.

4. Multidimensional Optimization and Conditions of Global Convergence

There are several ways to extend the characteristical algorithms in order to solve
multidimensional global optimization problems which employ, for example, the
approaches proposed in [13, 18, 30]. In this section, we will consider another
approach (see [5,21,25]) based on Peano-type space-filling curves.

Consider the problem of finding the global minimum of afunction ®(z) of N
variables over a hyperinterval D:

O(2") =min{®(2) : z € D}, 4.1
D={z€R": a; <z <b;,1<j <N}, (4.2)

where, in general, ®(z) is multiextremal .
If ®(z) iscontinuous, then for the function

d(z) = ®(2(x)), z € [a,b)], (4.3)
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where z(z) is the continuous Peano-type mapping of closed interval [a, b] onto the
hyperinterval D, we have

min{¢(z) : = € [a,b]} = min{®(z) : z € D}. (4.9)

Therefore, solving the multidimensional problem (4.1), (4.2) can be replaced by
solving the following one-dimensional problem

d(z*) =min{¢(z) : = € [a,b]} (4.5

with ¢(z) from (4.3).
As it has been shown in [25], if ®(z) is Lipschitzean with a constant K > 0
then ¢ () satisfies the Holder condition

p(a") — p(z")| < Ll — 2" 7N, o' 2" € [a,b], (4.6)

with aconstant L > 0 (Holder constant). If N = 1 then (4.6) isthe usual Lipschitz
condition.

For parallel characteristical algorithms the following theorem establishes suf-
ficient conditions of convergence to the global minima of the functions satisfying
(4.6) and, therefore, substantiates the capacity of methods to be considered for
solving the Lipschitzean multidimensional problems (4.1), (4.2) via the Peano-

type mappings.

THEOREM 4. Let a function, ¢(x), satisfy the Golder condition (4.6). Assuming
that the parallel characteristical algorithmminimizing the function ¢ () over [a, b]
meetsthe conditions (3.3), (3.5), (3.6) and, for all theintervals (z;_1, ;) such that
(zi_1,z;) N {z*} = 0, therelation

lim R() > oA™Y — 4 + ¢ 4.7)
Q—00
is fulfilled with
a>2"YN,L (4.8)

ifz,_1 € {:L"s} and z; € {ws}, and
a > 21_1/N,uL (4.9

in the opposite case.

Any global minimizer of the function ¢(z) in theinterval [a, b] is then the limit
point of the trial sequence generated by the algorithm.

Proof. Let z* beagloba minimizer of the function ¢(z), and j = j(Q) bethe
number of aninterval (z;_1,z;) suchthat z;_1 < z* < ;. Let usassumethat z*
is not a limit point of the trial sequence {z*}. Starting from a certain step of the
search, then, trials will not fall into the interval (z;_1, z;).
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Being within the interval (z;_1, z;), the point z* can be represented as z* =
Bxj_1+ (1 - pB)z;,0 < B < 1. Then, by virtue of (4.6) we obtain
zjo1— p(z*) < L(z* —zj_)YN = L(1— ﬁ)l/NA]l-/N,
2 — ¢(a*) < L(w; — o)V = LBV AT,
from where
zj + 2j-1 < 2¢(z") + L(BYN + (1 - B)M)A; <
< 2¢(z*) + LAY max (YN 4 (1 g)YN} =
= 2¢(z*) + 21 YN LAY (4.10)

In the case of (4.8) 3]- = 0;, and taking (3.12) into account, we have

. : YN B
Jim_ R(j) > (mj N +zj1)) be

from which the following inequality holds as aresult of (4.8)—(4.10):

QILmOO R(j) > —po(z*) + c. (4.11)

Let it now be §; = z; in situation (4.9) (the case §; = z;_1 is considered
analogously). Then, taking into account (4.10)

lim R(j) > aAYY — jiz; + ¢ >
Q—0 J

> al)N = 2ug () + p(wy ) = 25 YN LAY >

> (=2 VL) AT — (et + o

> —pp(e") + ¢,

i.e. (4.11) isagain true.

At the sametimethere exists at least one limit point z of thetrial sequence {z°}
because the search interval [a, b] isabounded set. For the characteristic R(t) of an
interval (z;—1, ;) suchthat z;_; < z < z; we have

Qlin R(t) = —pd(Z) + c. (4.12)

Conditions (4.11) and (4.12) allow us to draw the conclusion that starting from a
certain step of the search R(j) > R(t) which bringsthe assertion about the absence
of trialsin theinterval (z;_1, z;) to the contradiction with (2.4). |

NOTE. If 1 = 0, then the conditions of Theorem 4 coincide with the assumptions
of Theorem 2, and it is not necessary to suppose (4.6) for the function ¢(x).
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Thus, Theorem 4 formul ates requirements upon whose compl eting the sequence
of trials of the parallel characteristical algorithm haveall global minimizersaslimit
points. If in this case . > 0, and the number of parallel processors is uniformly
limited, then no other points can be limit points for this sequence. Note that in
the set of sequential methods the similar property is assured: for instance, by the
methods[13, 17, 19, 21, 22, 26].

The global convergence conditionsfor concrete known representatives of char-
acteristical classare a partial case of the general results of Theorem 4. For illustra-
tion, assume that the function to be minimized meets the Lipschitz condition that
correspondsto N = 1in (4.6) and consider two examples.

First, we will deal with the algorithm [24] for which 4 = 4 and ¢ = 0 in
relations (3.3) and (4.7). Its characteristics (2.14)

R(i) > rwl; — %(zz + zi—1) > rwA; — po;

asfrom (3.12) 6; < 3(z; + z_1). Then (4.7) holdsif
rw > 2L. (4.13)

It is easy to derive the sameinequality for characteristics (2.12) and (2.13). But
(4.13) coincides with the global convergence condition from [24].

As the second example we consider the broken lines parallel method (1 =
1,¢ = 0). In the sequential variant, it is similar to the Piyavskii algorithm [19].
Following the reasonings of the previous example we obtain for the characteristics
of this method

R(i) > %Ai — Wo;
fromwhere (4.7) istrueif m/2 > pL /2, 0r m > L. For the Piyavskii algorithm m
hasageometrical interpretation asthe slope of linear pieces of the support function.
So, the basic condition of application for the method [19] can be considered asthe
consequence of characteristical theory.

The above methods can be generalized [23-25] for the case of Holder functions
(4.6). These modified algorithms being also the characteristical methods can be
applied for solving the multidimensional problems (4.1) and (4.2) by means of the
reduction scheme (4.3)—(4.5). Formally, the generalization consists in using the
expression

chra —

NI =

(fEiq,]_ + fEiq) —
—(2’/’)_1(|Ziq - ziq,1|w_1) Sign(ziq - Ziq,]_) (4.149)

instead of (2.11), and in the replacement of the Eucleadean length A ; from (2.9)
by the Holeerian length A; = (x; —2;_1)"/" inthe characteristics of the methods
and in the estimate (2.15).
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The analogous consideration of the generalized methodsin the frame of charac-
teristical theory leads to the same global convergence conditions which have been
derived in [23-25].

5. Conditions of Nonredundant Parall€elization

The parallelization of the sequential characteristical algorithms by the scheme
(2.1)—«2.8) results in giving up a portion of the search information when choosing
trial points. Infact, the values of the objective function at the pointsof all preceding
trials are known for the sequential algorithm at the moment of selecting a point
z*+1 for the next trial (see (2.6) with ¢ = 1). In the parallel method, the choice of
thepointsz¥+7,1 < j < p = p(Q), from (2.6) at the Q-th iteration is madewithout
taking into consideration the function values at the points 251, .. ., ¥ /=1 which
have not been evaluated yet. The higher is the level of parallelization determined
by conditions (2.2)—2.8) and the function p(Q), the more significant are thelosses
of information in planning trials, and these losses are most considerablein the case
of complete parallelization when p(Q) = 7(Q).

Incomplete account of information can bring up the situation when the paral-
lel algorithm produces the trials more densely in comparison with its sequential
prototype, i.e. it generates redundant trials.

Following [25], let us introduce a number of notions. Let {z*} and {y™} be
infinite (withe = 0in stopping condition (3.11)) sequencesof trial pointsgenerated
accordingly by apurely sequential characteristical algorithm and itsparallel analog
in case of minimizing the same function ¢(z),z € [a, b]. Coincidence of these
sequences, i.e.

fahy =, &)

means that the parallel algorithm placestrials at the same points where the purely
sequential method executes trials. Note that (5.1) does not require the fulfillment
of z° = y* s > 1. When condition (5.1) takes place parallelization is called
nonredundant. But if condition (5.1) is not observed, it means that the parallel
scheme possesses some redundancy. L et usintroduce a redundancy coefficient for
its quantitative characteristic

A(m,s) =T'(m,s)/(m —s),m > s, (5.2
where
T'(m, s) = card({y**L,..., 5™\ {z"}) (5.3

is the number of redundant pointsin {y™} from the (s + 1)-th to the m-th trial.
This definition presupposes that inclusion {z*} C {y™} takes place. It is evident
that A(m,0) = O corresponds to the nonredundant case (5.1).
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Let usconsider parallel characteristical algorithms processing with two trialsin
every iteration after n initia steps (here in after we suppose that in the course of
these n iterations K trials have been done), i.e.

p(@)=2,Q>n, (54)

To continue we need a number of nonburdensome assumptions. We suppose
that if trials have been executed in both the ends of a subinterval (z;_1,z;) thena
new trial points 2%+ € (z;_1,z;) can be expressed as follows

gt = ¢j +8ign(zj—1 — 25)&5, (5.5)
¢ = (zj_1+25)/2, (5.6)
0< ¢ <ol (5.7)
wherle Ajisfrom (2.9) and 0 < o < 0.5. Note that (5.5)«5.7) implicate (3.5) if
Y _Ifio:e(:).f the ends of asubinterval (x;_1, z;) isnot thetrial point then we use
ah = ¢;. (5.8)

Along with (5.5) and (5.8), assume that characteristics R(i),1 < i < 7, and
values ¢;,1 < 5 < p, are completely determined by the points z;_1, z; of the
corresponding subintervals and by the values of the objective function evaluated
at these points, i.e.

R(i) = Y(z;-1,7j,2j-1, %), (5.9)

& = B(zj-1, 75,21, %)) (5.10)
Let us also assume that

y'=2°,1<s<K, (5.11)

i.e. initial stepsof the search for the sequential and parallel methods not connected
with characteristical decision rules (2.4)—«2.7), areidentical.

THEOREM 5. Let: (i) the objective function ¢(z), z € [a, b], meet Lipschitz con-
dition with a constant L;
(ii) conditions (5.4), (5.5), (5.7), (5.9—«5.11), (3.3), 1 > 0 be fulfilled for
sequential and parallel schemes of a characteristical algorithm;
(iii) for A; > 0Oit follow
R(i) > al\; — pb; + c. (5.12)
Thenwith o < % and

a>ul (5.13)
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the inequality
A(m,K) < E[(m — K)/6]/(m — K) < 0.17 (5.14)

takes place. Here E[d] isinteger part of d.
Proof. If after the m-th trial of the parallel method and the k-th trial of the
sequential method, the equality

(yt—17 yt) = (xq—la qu), t= t(m)a q= Q(k)a (515)

is true and the next trials at points y™** and z*+* respectively get into indicated
intervals. Then on account of (5.9)

R(t(m)) = R(q(k)) (5.16)
and according to (2.6), (5.5), (5.8), (5.10) we have
ym+1 Y (5.17)

From (5.11) with m = k = n on account of (5.15)—5.17) and decision rules
(2.4)—2.7) we obtain that

{a"} S {y™}. (5.18)
Inclusion (5.18) makes it possible to evaluate redundancy with the help of the
coefficient (5.2).

The truth of conditions (3.3), (3.13), (5.13) and (3.5) with v = 0.5 + ¢ ensures
for the accomplishment of the requirements of Theorem 4; therefore only the
global minimizers of the function ¢(z) can be limit points of the sequences {z*}
and {y™}. Thus, the set of limit points of the sequence {y"™} coincides with the
set of limit points of the sequence {z*}.

Let thefirst k points of the sequence {z*} be arranged in accordance with (2.3)
and j = j(k) be the number of an interval (z;_1,z;) suchthat z;_1 < z* < z;,
where z* is a global minimizer of ¢(z). Due to (5.12), (5.13) and the Lipschitz
condition for ¢(z), therelation

R(j) > —pg(z*) +c (5.19)

is true for the characteristic of this interval. As far as point z* is the limit point,
then because of (3.3)

R(j(k)) = —pe(z") + ¢+ 0,

if £k = oo.

Takinginto consideration (2.4) it followsfrom(5.19) that any interval (z; 1, =;),
i = i(k), whose characteristic satisfies (5.19) contains at least one point of the
sequence {z*}. At the sametime any interval (z; 1, z;) for which

R(i) < —pd(z*) +¢ (5.20)
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istrue, does not contain points of the sequence {z*}. Thus, we have obtained that
redundant trials of the parallel method can be executed only in the intervals for
which inequality (5.20) is true.

Let us again consider the interval [z;_1,z;],j = j(k), containing the global
minimizer z*. Thenext trial executed at apoint z = z**1 belonging to thisinterval
generates two new subintervals

[:Ej*la f], [f, x]] (521)
one of which contains z*. Let it be thefirst of them, i.e.
" € [zj_1, 2] (5.22)

The truth of inequality (5.19) for the interval (z;_1,«) from (5.21) comes out of
(5.22). Let usshow that thisinequality isalso truefor theinterval (z, z;). We need
the following designations

Ay =x;—x,0, =min{zj,z},z = ARy (5.23)

Suppose that the previous story of the search is such that the points z;_1 and x;
were the trials points: i.e. values z;_1 and z; have been calculated. L et us evaluate
the magnitude ¢,,. Consider the case z;_1 < z;. Then, according to (5.22), (5.5),
(5.7), (5.23)

1t <z =cj—¢§ <
0y < z2<¢(z*)+ L(x — z*) < ¢(z*) + LA,. (5.24)
If zj_1 > z;, we consider two cases. Inthefirst of themwhen z* > ¢;, we have
0y <2< @(2")+ Lz — 2") < p(a) + L(z — ¢j) =
= p(a") + L& < p(a”) + LoAj < (") + LAq,

asfaraso < tand A, < (05— 0)A;.
In the second case when z* < ¢;, we obtain

0y = 05(z; + 2z —|z; — 2z]) <0.5(z; + z) <
< 05(2zj—1+2) < Pp(z") + 05L(x — z_1) <

§¢wﬂ+§%§§3

Thisinequality allows us to estimate characteristic R, of theinterval (z, z;):

Ay < d(z*) + LA,

Ry > aly — pby + ¢ > (a — pL)Ay — pd(z*) + ¢
from where, taking into account (5.13), it comes out that

Ry, > —pg(z*) + c. (5.25)
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Inequality (5.25) is aso trueif z; ¢ {z*}, since in this case, according to (5.8),
z = ¢;. Asthe Lipschitz conditionis satisfied for ¢(z), wehave z < ¢(z*) + LA;
therefore

Rx > an —pztc > (a - ML)Ax - M¢(x*) t+c.

Thus, if after & trials there exists a pair of intervals of type (5.21), then the
choice of two trials simultaneously in accordance with decision rule (2.1)—2.8)
and (5.4) cannot generate redundant trials. After K initial trials (see 5.11) during
n iterations, the worst situation (in the sense of generating redundant trials during
the next step) can be the situation when there exists only one interval satisfying
condition (5.19): the interval of type (5.22). Consequently, one redundant point
will be obtained at the (n + 1)-th iteration.

The second trial of thisiteration will result in the appearing of the pair (5.21).
In this case, no other intervals for which inequality (5.19) is true can be outside
theinterval (5.22). This meansthat the next points ™ € {z*} may lay only in the
interval (5.22) which aready containsonetrial and that the (n + 2)-th iteration will
take placeinit. If oneof trials of the (n + 3)-th pair fallsinto (5.22), it will resultin
the appearing of anew pair of type (5.21). Consequently, the source of redundant
trials can only be the situation when the next pair contains points from (z, z;) but
does not contain points from (5.22). If it happens at the (n + 3)-th iteration, then
the (n + 4)-th iteration can place one point in interval (5.22), and another onein
some interval (z;_1,z;) whose characteristic satisfies condition (5.20). The last
point will be redundant. It will be followed by creating the situation identical to
the position after executing the (n + 1)-th iteration.

Thus, not more than one redundant trial can be obtained during six trials. This
means that inequality (5.14) is true. |

COROLLARY 1. If the objective function ¢(z) has H global minimizers and
between every pair of them at least one point from {3} has been placed in the
courseof starting n iterations, then, given conditions of theorem6, a parallel char-
acteristical algorithmwith 2H parallel processors provides fulfillment of (5.14).
Proof. The proof is obvious and we omit it. |

6. Numerical Experiments

As an illustration we adduce results of numerical experiments executed on an
ALLIANT FX/80 Departmental Mini-Supercomputer [1] with 4 vector processors.
Three series of experiments have been done for testing one and multidimensional
parallel characteristical algorithms.
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We consider the case when thetime required for executing trialsis much greater
than all the other times required for the algorithms functioning. Thus, we can use
the speed up in iterations calculated as

s(p) = n(p/n(p),p > 1,

for estimating efficiency of the methods. Here n(1) is the number of trials done
by a sequential characteristical algorithm (after executing the starting trials) for
solving a problem and n(p) is one for solving the same problem by the parallel
method with p parallel processorsfor every iteration.

Inthefirst caseweuseknown test functions (see[12]) for testing one-dimensional
parallel characteristical algorithms. We construct parallel characteristical algo-
rithms on the basis of the purely sequential methods proposed by Kushner (Method
1), Piyavskii (Method 2). The parallel method proposed in [24] generalizing Stron-
gin'sagorithmisthe third method tested. We have taken three functions from [12]
and the following starting points for all the methods:

PROBLEM 1. Function 2, starting points 3, 4, 5.
PROBLEM 2. Function 9, starting points 5, 8, 11.
PROBLEM 3. Function 19, starting points 1, 2, 3.

In methods 1 and 2, starting trials have been also done at the margin points ¢ and
b of the corresponding search regions [a, b]. For these methods we have used the
exact Lipschitz constants in opposite with method 3 where the adaptive estimate w
and the parameter » = 2 (see (2.12)—2.15)) have been used. For all experiments
we have taken accuracy ¢ = 0.0001(b — a) in the stopping rule (3.11). Results of
the experiments are shown in Table I. Global solutions have been found in all the
cases. Sometimes for methods 1 and 3 we have speed up greater than the number
of the parallel processors used. This situation is possible as in these agorithms
the behavior of the objective functions is adaptively estimated. For example, if
in method 3 the Lipschitz constant is estimated better by the parallel version, the
search is accelerated. Note that the following situation can take place due to the
stopping rule (3.11):

n(l) —n(p) <p, p>1, (6.1)

See, for example, the results of method 2 for Problem 2.

The second and third seriesof the experimentsdeal with testing the multidimen-
sional parallel characteristical algorithms created in accordance with the approach
of Section 4. In the second series we maximize 100 two-dimensional functions

7 7 2
P(z) = (Z > (Aijgij(2) +Bz'jhz'j(2)) +

i=1j=1
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Table I. Numerical results for univariate functions.

NP P Method 1 Method 2 Method 3
Trids Speedup Tridls Speedup Triads Speed up
1 1 4252 - 151 - 120 -
2 4353 195 151 2.0 119 2.02
3 4352 293 155 2.92 162 221
4 4353 391 157 3.83 163 2.93
2 1 4622 - 124 - 125 -
2 4621 20 123 2.02 125 2.0
3 4622 30 122 3.05 126 2.98
4 4373 4.24 125 3.97 127 394
3 1 2780 - 126 - 148 -
2 271719 20 127 1.98 153 1.93
3 27162 3.02 128 2.95 159 2.79
4 2769 4.02 133 3.78 163 3.63

NP — number of problem
P —number of parallel processors

oy 1/2

7 7
+ (Z > (Cijgij(z) — Dz‘j’%’j(@) ,

i=1j=1
wherez = (z1,20) € R2,0< 2, <1, s=1,2,
gij(z) = sin(imzy) sin(jrz2),
hij(z) = cos(imz1) cos(jmzz),

A;;, Bij, Cyj, Dy are random coefficients uniformly distributed on the interval
[—1,1].

All the experiments have been executed with the accuracy e = 0.001 from (3.11)
in Holder’'s metrics. Two parallel characteristical algorithms have been tested. The
first oneisthe paralel algorithm proposedin[22] where (asin Piyavskii’s method)
an estimate of the Lipschitz constant taken a priori has been used. This estimate
has been obtained by evaluating the objective functions at 2000 points taken on
a uniform mesh. Numerical results for this method (see Method 4) are shown in
Tablell. The global solutions have been found for 99 functions. In the unique case
it has not been done by both the sequential and the parallel methods because the
estimate was less than the real Lipschitz constant. Method 5 presented in Table
Il isthe parallel information algorithm (see [25]). The global solutions have been
found for all 100 functions.
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Table I1. Average results for 100 two-dimensional functions

Number of Method 4 Method 5
processors  Trias Speedup Trids Speed up
1 101325 - 157512 -

2 1012.82 2.001 1596.08 1.974

3 1012.33  3.003 1562.61 3.024

4 1012.00 4.005 1599.92 3.938
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Figure 1. Two-dimensional section of the test function (6.2).

The third group of the test experiments consists in the minimization of the
multidimensional functions

f(z) = (r/N){sin’(my1) + 5(yn — 1)* +

N-1
+ ) [(yi — V(1 + sin’(myig))]} (6.2)
=1

where
y; =14+ 025(z; —1)and —10< 2, <10, 1<i<N,

for the dimensions N = 2, 3, 4. This function is the modified test function from
[15]. Figure 1 shows atwo-dimensional section of the function (6.2) depending on
4 variables. This section correspondsto fixed coordinates z; = —8, 2o = 9 and to
free coordinates 23 and zg.

We have considered two characteristical algorithms: parallel technique [25]
(Method 5) and the broken lines parallel algorithm generalized for the multidimen-
sional optimization according to the scheme of Section 4 (see (4.14)) and further
referred to as Method 6. For both the methods we have taken accuracy € = 107°
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Table I11. Numerical resultsfor Problem (6.2)

Dimension  Number of Method 5 Method 6
processors  Trials Speedup Trials Speedup
2 1 1082 - 1027 -
2 1084  1.996 1028  1.998
3 1083  2.997 1050 2934
4 1136  3.810 1224  3.356
3 1 4784 - 4649 -
2 4776  2.003 5018 1.853
3 4776 3.005 4647  3.001
4 4768  4.016 4480 4.151
4 1 7958 - 6274 —
2 7876  2.021 5238  2.396
3 6750 3537 6486  2.902
4 7820 4.072 6468  3.880

in (3.11) and have used the adaptive estimate of the Lipschitz constant m = rw,
where w from (2.15) and » > 1 is a parameter of methods. The initial stages of
the search while solving the problem (4.5) were the same and included trials at the
points 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 of theinterval [0,1]. Having taken into account the
condition (4.9) we have chosen parameter » = 3.5 for the Method 5 and r = 1.7
for Method 6 in order to provide the sufficient conditions of convergenceto global
minima which have been found in all the searches.

The results of the experiments are contained in Table I1l. We have aready
noted above that adaptive estimation of the behavior of the function can lead to the
situation when the speed up exceeds the number of parallel processors used (see
Tablelll).

On the whole, the numerical experiments confirm the basic theoretical results
of the paper concerning the convergence and efficiency of parallelization and
demonstrate the applicability of the parallel characteristical algorithms for solving
the multidimensional multiextremal problems.

7. Conclusion

In this paper a class of paralel characteristical algorithms for global optimization
of one-dimensional multiextremal functions has been introduced. To illustrate the
general approach examples of the algorithms have been presented. General condi-
tions of “everywhere dense”, local and global convergence have been established
for the class. Efficiency conditions for the parallel algorithms of the introduced
classin comparison with their sequential versions have been obtained. A general-
ization for multidimensional case has been done. Numerical experiments executed
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on a parallel computer with one and multidimensional methods on test functions
taken from literature have been also presented.
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